Hawridge and Cholesbury CofE School

Calculation Policy for Mathematics

Our Vision is for every child within the Hawridge \& Cholesbury family to grow, flourish 'have life and ... have it more abundantly' (John 10:10 KLV); to be fascinated, rounded, eager to make a difference, spiritual and have high aspirations through Jesus' teaching and our curriculum

We live our vision through our natural setting and our school values:

Respect Teamwork Responsibility Understanding Peace Honesty
Review date: May 2023
Adopted by the governing body on 21 June 2023
Next review: June 2026

Introduction

The following calculation policy has been devised to meet the requirements of the National Curriculum 2014 for the teaching and learning of mathematics, and is also designed to give pupils a consistent and smooth progression of learning in calculations across the school. At Hawridge \& Cholesbury, teachers plan and deliver sequences of learning using the White Rose teaching scheme. This calculation policy reflects the teaching methods used within White Rose.

Please note that early learning in number and calculation in Reception follows the 'Development Matters' EYFS document, and this calculation policy is designed to build on progressively from the content and methods established in the Early Years Foundation Stage.

It is important that any type of calculation is given a real life context or problem solving approach to help build children's understanding of the purpose of calculation, and to help them recognise when to use certain operations and methods when faced with problems. This must be a priority within calculation lessons reflecting the aims of the National Curriculum 2014 that pupils should make rich connections across mathematical ideas to develop fluency, mathematical reasoning and competence in solving increasingly sophisticated problems.

Children will generally follow the programme of study at broadly the same pace; however it is vital that pupils are taught according to the stage that they are currently working at: they may need to continue working at a lower stage until they are secure enough to move on.

Aims

- To introduce children to the processes of calculation progressing from concrete, pictorial to abstract means
- To ensure children have a large proportion of time spent reinforcing number to build competency
- To support children in developing ways of recording to support their thinking and calculation methods
- To enable children to learn and interpret calculation signs
- To provide consistent models and images across the school to promote secure understanding
- To facilitate the use of tools to help children construct their understanding without promoting the over reliance of such tools
- To enable children to strengthen and refine their mental methods in order to develop informal and formal written methods and judge the accuracy of their calculations
- To support children in becoming more efficient and succinct in their recordings which will ultimately lead to efficient formal written methods
- To understand mathematical vocabulary to allow children to carry out calculations correctly
- To promote the correct use of age appropriate mathematical vocabulary to enable children to explain their thinking and build reasoning both verbally and in written format
- By the end of KS1, pupils should develop confidence and mental fluency with whole numbers, counting and place value. Pupils should know the number bonds to 20 and be precise in using and understanding place value.
- By the end of KS2, pupils should be fluent in written methods for all four operations, including long multiplication and division, and in working with fractions, decimals and percentages.

Mental and Oral Methods of Calculation

Early practical, oral and mental work lays the foundations by providing children with a good understanding of how the four operations build on efficient counting strategies and a secure knowledge of place value and number facts.

Reception By the end of this stage, children must be able to recognise patterns, begin counting sequences and recognise one more or one less than any given number 0-100.

Year 1 Counting in multiples of 2, 10 and 5. By the end of the year 1, children can start learning the 2, 10 and 5 times tables. Count and read, to and across 100 forwards and backwards beginning with any given number (0-100).

Year $2 \quad$ Recall 2, 10 and 5 multiplication tables.
Year 3 Recall 2,10 and5 multiplication tables. Learn 3, 4 and 8 multiplication tables.
Year 4 Recall 2,10,5,3,4 and 8 multiplication tables. Learn 6, 7, 9,11 and 12 multiplication tables.
Year 5/6 Continue to practise all multiplication tables up to 12×12.

Progression in Calculations

Addition

Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.
Regrouping to make 10.	bigger number and use the smaller number to make 10. Use a tens frame to show pairs which make 10.	Use pictures or a number line. $3+9=$ Regroup or partition the smaller number to make 10.	$7+4=11$ If I am at seven, how many more do I need to make 10 ? How many more do I add on now?
Adding two or three	$4+7+6=17$		

Column methodregrouping

Make both numbers on a place value grid

Add up the units and exchange 10 ones for one 10.

Add up the rest of the columns, exchanging the 10 counters from one column for the next place value column until every column has been added.

This can also be done with Base 10 to help children clearly see that 10 ones equal 1 ten and 10 tens equal 100

As children move on to decimals, money and decimal place value counters can be used to support learning

Children can draw a pictoral representation of the columns and place value counters to further support their learning and understanding.

Show regrouping and exchanging ten ones for one ten using Base 10 representation.

Start by partitioning the numbers before moving on to clearly show the exchange below the addition.

$$
\begin{array}{r}
20+5 \\
40+8 \\
\hline 60+13=73 \\
\\
\\
\\
\\
\\
\frac{536}{621} \\
\end{array}
$$

As the children move on, introduce decimals with the same number of decimal places and different.

Money can be used here.
72.8
$+54.6$
127.4

11

Key Vocabulary: Add, count, on, addition, plus, more, sum, total, altogether, increase, regroup, exchange

Subtraction

| Objective and
 Strategies | Concrete | Pictorial |
| :---: | :---: | :---: | :---: |
| Taking away ones | Use physical objects, counters, cubes etc to
 show how objects can be taken away. | Cross out drawn objects to show what has been taken away. |

Counting back	Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones. Use counters and move them away from the group as you take them away counting backwards as you go.	Count back on a number line or number track Start at the bigger number and count back the smaller number showing the jumps on the number line. This can progress all the way to counting back using two 2 digit numbers.	Put 13 in your head, count back 4. What number are you at? Use your fingers to help.

Find the difference

Make 10	Make 14 on the ten frame. Take away the four first to make 10 and then takeaway one more so you have taken away 5 . You are left with the answer of 9 .	Start at 13. Take away 3 to reach 10. Then take away the remaining 4 so you have taken away 7 altogether. You have reached your answer.	$16-8=$ How many do we take off to reach the next 10 ? How many do we have left to take off?
Column method without regrouping	Use Base 10 to make the bigger number then take the smaller number away. Show how you partition numbers to subtract. Again make the larger number first.		$\begin{gathered} 47-24=23 \\ -\frac{40+7}{20+4} \\ \hline 20+3 \\ \hline \end{gathered}$ This will lead to a clear written

	 Now I can take away eight tens and complete my subtraction Show children how the concrete method links to the written method alongside your working. Cross out the numbers when exchanging and show where we write our new amount.		This will lead to an understanding of subtracting any number including decimals.

Key Vocabulary:

Count back, take away, fewer, subtract, less, minus, difference between

\begin{tabular}{|c|c|c|c|}
\hline Objective and Strategies \& Concrete \& Pictorial \& Abstract \\
\hline Doubling \& \begin{tabular}{l}
Use practical activities to show how to double a number. \\
double 4 is 8
\[
4 \times 2=8
\] \\
Use Numicon to double a number.
\end{tabular} \& \begin{tabular}{l}
Draw pictures to show how to double a number. \\
Double 4 is 8
\(\square\)
\(\square\)

\square
\square
\square

\end{tabular} \& Partition a number and then double each part before recombining it back together.

\hline Counting in multiples \& Count in multiples supported by concrete objects in equal groups. \& Use a number line or pictures to continue support in counting in multiples. \& | Count in multiples of a number aloud. |
| :--- |
| Write sequences with multiples of numbers. $2,4,6,8,10$ $5,10,15,20,25,30$ |

\hline
\end{tabular}

Repeated addition
Arrays- showing
commutative
multiplication

Show the link with arrays to first introduce the grid method.

4 rows of 10
4 rows of 3

Move on to using Base 10 to move towards a more compact method.

4 rows of 13

Move on to place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows.

Calculatio

4×126

Children can represent the work they have done with place value counters in a way that they understand.

They can draw the counters, using colours to show different amounts or just use circles in the different columns to show their thinking as shown below.

Start with multiplying by one digit numbers and showing the clear addition alongside the grid.

\times	30	5
7	210	35

$\mathbf{2 1 0}+\mathbf{3 5}=\mathbf{2 4 5}$

Moving forward, multiply by a 2 digit number showing the different rows within the grid method.

X	$\mathbf{1 0 0 0}$	$\mathbf{3 0 0}$	$\mathbf{4 0}$	$\mathbf{2}$
$\mathbf{1 0}$	10000	3000	400	20
$\mathbf{8}$	8000	2400	320	16

	Add up each column, starting with the ones making any exchanges needed. Then you have your answer.

Start with long multiplication reminding the children about lining up their numbers clearly in columns.

If it helps, children can write out what they are solving next to their answer.

This moves to the more compact method.

1342
x 18
13420
10736
24156

Key Vocabulary: Groups of, product, lots of, multiply, times,

\begin{tabular}{|c|c|c|c|}
\hline Objective and Strategies \& Concrete \& Pictorial \& Abstract \\
\hline Sharing objects into groups \& \begin{tabular}{l}
 \\
I have 10 cubes, can you share them equally in 2 groups?
\end{tabular} \& \begin{tabular}{l}
Children use pictures or shapes to share quantities. \\
\(8 \div 2=4\)
\end{tabular} \& Share 9 buns between three people.
\[
9 \div 3=3
\] \\
\hline Division as grouping \& \begin{tabular}{l}
Divide quantities into equal groups. \\
Use cubes, counters, objects or place value counters to aid understanding.
\[
96 \div 3=32
\]

 \&

Use a number line to show jumps in groups. The number of jumps equals the number of groups.

$$
\begin{aligned}
& 20 \div 5=? \\
& 5 \times ?=20
\end{aligned}
$$

Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group.

 \&

$$
28 \div 7=4
$$

Divide 28 into 7 groups. How many are in each group?
\end{tabular}

\hline
\end{tabular}

Division within arrays | Link division to multiplication by creating |
| :--- |
| an array and thinking about the number |
| sentences that can be created. |

Dividing by 1 digit (grouping)

Use grouping to support understanding of short division when dividing a 3 or 4-digit number by a 1digit number.

$$
8,532 \div 2=4,266
$$

Begin with divisions that divide equally with no remainder.
divisor $\frac{\text { quotient }}{\text {)dividend }}$

Move onto divisions with a remainder.

Finally move into decimal places to divide the total accurately.

	1	4	6
		16	21
35	51	1	0

Divide multi-digits by 2 digits (short method)	When dividing up to 4- digits by 2-digits, written methods become the most accurate as concrete and pictorial representations become less effective. Children can write out multiples to support their calculations with larger remainders. Children will also solve problems with remainders where the quotient can be rounded as appropriate.$7,335 \div 15=489$ 0 4 8 9 15 7 7_{3} ${ }^{13} 3$ 13_{5}15
Divide multi-digits by 2 digits (long division) Key vocabulary	Children should write out multiples to support their calculations with larger remainders. $\begin{aligned} 12 \times 1 & =12 \\ 12 \times 2 & =24 \\ 12 \times 3 & =36 \\ 12 \times 4 & =48 \\ 12 \times 5 & =60 \\ 12 \times 6 & =72 \\ 12 \times 7 & =84 \\ 12 \times 8 & =96 \\ 12 \times 7 & =108 \\ 12 \times 10 & =120 \end{aligned}$ $7,335 \div 15=489$ Array, Divisisor, Dividend, Exchange, Quotient, Remainder, Sharing, Grouping - how many groups?

Reviewed and edited by Paula Birley, May 2023

